47,180 research outputs found

    Instantons and Fluctuations in a Lagrangian Model of Turbulence

    Full text link
    We perform a detailed analytical study of the Recent Fluid Deformation (RFD) model for the onset of Lagrangian intermittency, within the context of the Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) path integral formalism. The model is based, as a key point, upon local closures for the pressure Hessian and the viscous dissipation terms in the stochastic dynamical equations for the velocity gradient tensor. We carry out a power counting hierarchical classification of the several perturbative contributions associated to fluctuations around the instanton-evaluated MSRJD action, along the lines of the cumulant expansion. The most relevant Feynman diagrams are then integrated out into the renormalized effective action, for the computation of velocity gradient probability distribution functions (vgPDFs). While the subleading perturbative corrections do not affect the global shape of the vgPDFs in an appreciable qualitative way, it turns out that they have a significant role in the accurate description of their non-Gaussian cores.Comment: 32 pages, 9 figure

    The Onset of Intermittency in Stochastic Burgers Hydrodynamics

    Full text link
    We study the onset of intermittency in stochastic Burgers hydrodynamics, as characterized by the statistical behavior of negative velocity gradient fluctuations. The analysis is based on the response functional formalism, where specific velocity configurations - the viscous instantons - are assumed to play a dominant role in modeling the left tails of velocity gradient probability distribution functions. We find, as expected on general grounds, that the field theoretical approach becomes meaningful in practice only if the effects of fluctuations around instantons are taken into account. Working with a systematic cumulant expansion, it turns out that the integration of fluctuations yields, in leading perturbative order, to an effective description of the Burgers stochastic dynamics given by the renormalization of its associated heat kernel propagator and the external force-force correlation function.Comment: 10 pages, 6 figure

    Passiv damping on spacecraft sandwich panels

    Get PDF
    For reusable and expendable launch vehicles as well as for other spacecraft structural vibration loads are safety critical design drivers impacting mass and lifetime. Here, the improvement of reliability and safety, the reduction of mass, the extension of service life, as well as the reduction of cost for manufacturing are desired. Spacecraft structural design in general is a compromise between lightweight design and robustness with regard to dynamic loads. The structural stresses and strains due to displacements caused by dynamic loads can be reduced by mechanical damping based on passive or active measures. Passive damping systems can be relatively simple and yet are capable of suppressing a wide range of mechanical vibrations. Concepts are low priced in development, manufacturing and application as well as maintenancefree. Compared to active damping measures passive elements do not require electronics, control algorithms, power, actuators, sensors as well as complex maintenance. Moreover, a reliable application of active dampers for higher temperatures and short response times (e. g. re-entry environment) is questionable. The physical effect of passive dampers is based on the dissipation of load induced energy. Recent activities performed by OHB have shown the function of a passive friction-damping device for a vertical tail model of the German X-vehicle PHÖNIX but also for general sandwich structures. The present paper shows brand new results from a corresponding ESA-funded activity where passive damping elements are placed between the face sheets of large spacecraft relevant composite sandwich panels to demonstrate dynamic load reduction in vibration experiments on a shaker. Several passive damping measures are investigated and compared

    A Review of Indigenous Food Crops in Africa and the Implications for more Sustainable and Healthy Food Systems

    Get PDF
    Indigenous and traditional foods crops (ITFCs) have multiple uses within society, and most notably have an important role to play in the attempt to diversify the food in order to enhance food and nutrition security. However, research suggests that the benefits and value of indigenous foods within the South African and the African context have not been fully understood and synthesized. Their potential value to the African food system could be enhanced if their benefits were explored more comprehensively. This synthesis presents a literature review relating to underutilized indigenous crop species and foods in Africa. It organizes the findings into four main contributions, nutritional, environmental, economic, and social-cultural, in line with key themes of a sustainable food system framework. It also goes on to unpack the benefits and challenges associated with ITFCs under these themes. A major obstacle is that people are not valuing indigenous foods and the potential benefit that can be derived from using them is thus neglected. Furthermore, knowledge is being lost from one generation to the next, with potentially dire implications for long-term sustainable food security. The results show the need to recognize and enable indigenous foods as a key resource in ensuring healthy food systems in the African continent

    Kinematics of a Spacetime with an Infinite Cosmological Constant

    Full text link
    A solution of the sourceless Einstein's equation with an infinite value for the cosmological constant \Lambda is discussed by using Inonu-Wigner contractions of the de Sitter groups and spaces. When \Lambda --> infinity, spacetime becomes a four-dimensional cone, dual to Minkowski space by a spacetime inversion. This inversion relates the four-cone vertex to the infinity of Minkowski space, and the four-cone infinity to the Minkowski light-cone. The non-relativistic limit c --> infinity is further considered, the kinematical group in this case being a modified Galilei group in which the space and time translations are replaced by the non-relativistic limits of the corresponding proper conformal transformations. This group presents the same abstract Lie algebra as the Galilei group and can be named the conformal Galilei group. The results may be of interest to the early Universe Cosmology.Comment: RevTex, 7 pages, no figures. Presentation changes, including a new Title. Version to appear in Found. Phys. Let
    corecore